3x^2=1/81

Simple and best practice solution for 3x^2=1/81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2=1/81 equation:



3x^2=1/81
We move all terms to the left:
3x^2-(1/81)=0
We add all the numbers together, and all the variables
3x^2-(+1/81)=0
We get rid of parentheses
3x^2-1/81=0
We multiply all the terms by the denominator
3x^2*81-1=0
Wy multiply elements
243x^2-1=0
a = 243; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·243·(-1)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*243}=\frac{0-18\sqrt{3}}{486} =-\frac{18\sqrt{3}}{486} =-\frac{\sqrt{3}}{27} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*243}=\frac{0+18\sqrt{3}}{486} =\frac{18\sqrt{3}}{486} =\frac{\sqrt{3}}{27} $

See similar equations:

| 5(x-20)/2=105 | | 6x+10x-32=272 | | 23x+x=264 | | 23x-11x=144 | | 3(y+3)=-4y+30 | | 3(y+3)=-4+30 | | 20+7y=8(y+2) | | 20+7y=8(y+2)8 | | 11x+(-5)=9x(-3) | | 5.9(x-16)+3.4x=4 | | (x-2)^3+1=0 | | 2t^2-5t+10=0 | | Y=6/5x+4/9 | | 5(y-4)+1=3y+7 | | (2w+2)+w=40 | | 5x+3-2-2x)=-8 | | x-2/5=9 | | -3(4x+7)=-9-12x | | 9+8n=n+3n-8-3 | | 3x-3(x-4)=12 | | -5+6x+9=x-2+2x | | -3x+5+8x-6=9 | | 0.666x-7=11 | | 6r=-8r-8 | | 5/3-2x=1/6 | | 9(9z+14)=603 | | 3x-55=72 | | 0.2=x60 | | 4n+7(n=2 | | -x+1=2x=x+30 | | 12x-33=180 | | 2n^2+15n-7=0 |

Equations solver categories